Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Chem Neurosci ; 14(24): 4409-4418, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38048230

RESUMO

Docosahexaenoic acid [22:6(n-3), DHA], a polyunsaturated fatty acid, has an important role in regulating neuronal functions and in normal brain development. Dysregulated brain DHA uptake and metabolism are found in individuals carrying the APOE4 allele, which increases the genetic risk for Alzheimer's disease (AD), and are implicated in the progression of several neurodegenerative disorders. However, there are limited tools to assess brain DHA kinetics in vivo that can be translated to humans. Here, we report the synthesis of an ω-radiofluorinated PET probe of DHA, 22-[18F]fluorodocosahexaenoic acid (22-[18F]FDHA), for imaging the uptake of DHA into the brain. Using the nonradiolabeled 22-FDHA, we confirmed that fluorination of DHA at the ω-position does not significantly alter the anti-inflammatory effect of DHA in microglial cells. Through dynamic PET-MR studies using mice, we observed the accumulation of 22-[18F]FDHA in the brain over time and estimated DHA's incorporation coefficient (K*) using an image-derived input function. Finally, DHA brain K* was validated using intravenous administration of 15 mg/kg arecoline, a natural product known to increase the DHA K* in rodents. 22-[18F]FDHA is a promising PET probe that can reveal altered lipid metabolism in APOE4 carriers, AD, and other neurologic disorders. This new probe, once translated into humans, would enable noninvasive and longitudinal studies of brain DHA dynamics by guiding both pharmacological and nonpharmacological interventions for neurodegenerative diseases.


Assuntos
Doença de Alzheimer , Ácidos Docosa-Hexaenoicos , Humanos , Camundongos , Animais , Ácidos Docosa-Hexaenoicos/metabolismo , Ácidos Docosa-Hexaenoicos/farmacologia , Apolipoproteína E4/genética , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Transporte Biológico , Doença de Alzheimer/metabolismo
2.
Artigo em Inglês | MEDLINE | ID: mdl-36341886

RESUMO

Dysreglulated brain arachidonic acid (AA) metabolism is involved in chronic inflammation and is influenced by apolipoprotein E4 (APOE4) genotype, the strongest genetic risk factor of late-onset Alzheimer's disease (AD). Visualization of AA uptake and distribution in the brain can offer insight into neuroinflammation and AD pathogenesis. Here we present a novel synthesis and radiosynthesis of 20-[18F]fluoroarachidonic acid ([18F]-FAA) for PET imaging using a convergent route and a one-pot, single-purification radiolabeling procedure, and demonstrate its brain uptake in human ApoE4 targeted replacement (ApoE4-TR) mice. By examining p38 phosphorylation in astrocytes, we found that fluorination of AA at the ω-position did not significantly alter its biochemical role in cells. The brain incorporation coefficient (K*) of [18F]-FAA was estimated via multiple methods by using an image-derived input function from the right ventricle of the heart as a proxy of the arterial input function and brain tracer concentrations assessed by dynamic PET-MR imaging. This new synthetic approach should facilitate the practical [18F]-FAA production and allow its translation into clinical use, making investigations of dysregulation of lipid metabolism more feasible in the study of neurodegenerative diseases.


Assuntos
Doença de Alzheimer , Apolipoproteína E4 , Animais , Camundongos , Humanos , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Astrócitos , Tomografia por Emissão de Pósitrons , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Camundongos Transgênicos
3.
J Am Chem Soc ; 144(44): 20288-20297, 2022 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-36301712

RESUMO

Delivering cargo molecules across the plasma membrane is critical for biomedical research, and the need to develop molecularly well-defined tags that enable cargo transportation is ever-increasing. We report here a hydrophilic endocytosis-promoting peptide (EPP6) rich in hydroxyl groups with no positive charge. EPP6 can transport a wide array of small-molecule cargos into a diverse panel of animal cells. Mechanistic studies revealed that it entered the cells through a caveolin- and dynamin-dependent endocytosis pathway, mediated by the surface receptor fibrinogen C domain-containing protein 1. After endocytosis, EPP6 trafficked through early and late endosomes within 30 min. Over time, EPP6 partitioned among cytosol, lysosomes, and some long-lived compartments. It also demonstrated prominent transcytosis abilities in both in vitro and in vivo models. Our study proves that positive charge is not an indispensable feature for hydrophilic cell-penetrating peptides and provides a new category of molecularly well-defined delivery tags for biomedical applications.


Assuntos
Peptídeos Penetradores de Células , Endocitose , Animais , Endossomos/metabolismo , Peptídeos Penetradores de Células/metabolismo , Lisossomos/metabolismo , Interações Hidrofóbicas e Hidrofílicas
4.
Onco Targets Ther ; 15: 597-608, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35669165

RESUMO

Objective: In this study, we aim to establish a non-invasive tool to predict epidermal growth factor receptor (EGFR) mutation status and subtypes based on radiomic features of computed tomography (CT). Methods: A total of 233 lung adenocarcinoma patients were investigated and randomly divided into the training and test cohorts. In this study, 2300 radiomic features were extracted from original and filtered (Exponential, Laplacian of Gaussian, Logarithm, Gabor, Wavelet) CT images. The radiomic features were divided into four categories, including histogram, volumetric, morphologic, and texture features. An RF-BFE algorithm was developed to select the features for building the prediction models. Clinicopathological features (including age, gender, smoking status, TNM staging, maximum diameter, location, and growth pattern) were combined to establish an integrated model with radiomic features. ROC curve and AUC quantified the effectiveness of the predictor of EGFR mutation status and subtypes. Results: A set of 10 features were selected to predict EGFR mutation status between EGFR mutant and wild type, while 9 selected features were used to predict mutation subtypes between exon 19 deletion and exon 21 L858R mutation. To predict the EGFR mutation status, the AUC of the training cohort was 0.778 and the AUC of the test cohort was 0.765. To predict the EGFR mutation subtypes, the AUC of training cohort was 0.725 and the AUC of test cohort was 0.657. The integrated model showed the most optimal predictive performance with EGFR mutation status (AUC = 0.870 and 0.759) and subtypes (AUC = 0.797 and 0.554) in the training and test cohorts. Conclusion: CT-based radiomic features can extract information on tumor heterogeneity in lung adenocarcinoma. In addition, we have established a radiomic model and an integrated model to non-invasively predict the EGFR mutation status and subtypes of lung adenocarcinoma, which is conducive to saving clinical costs and guiding targeted therapy.

5.
Artigo em Inglês | MEDLINE | ID: mdl-34405552

RESUMO

Transarterial chemoembolization (TACE) is a recommended treatment for patients suffering from intermediate and advanced hepatocellular carcinoma (HCC). As compared to the conventional TACE, drug-eluting bead TACE demonstrates several advantages in terms of survival, treatment response, and adverse effects. The selection of embolic agents is critical to the success of TACE. Many studies have been performed on the modification of the structure, size, homogeneity, biocompatibility, and biodegradability of embolic agents. Continuing efforts are focused on efficient loading of versatile chemotherapeutics, controlled sizes for sufficient occlusion, real-time detection intra- and post-procedure, and multimodality imaging-guided precise treatment. Here, we summarize recent advances and applications of microspheres and nanoparticles in TACE for HCC. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.


Assuntos
Carcinoma Hepatocelular , Quimioembolização Terapêutica , Neoplasias Hepáticas , Nanopartículas , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Quimioembolização Terapêutica/efeitos adversos , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Microesferas , Nanopartículas/uso terapêutico , Resultado do Tratamento
6.
Front Physiol ; 12: 700847, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34552500

RESUMO

High-density lipoproteins (HDLs) are complex, heterogenous lipoprotein particles, consisting of a large family of apolipoproteins, formed in subspecies of distinct shapes, sizes, and functions and are synthesized in both the brain and the periphery. HDL apolipoproteins are important determinants of Alzheimer's disease (AD) pathology and vascular dementia, having both central and peripheral effects on brain amyloid-beta (Aß) accumulation and vascular functions, however, the extent to which HDL particles (HLD-P) can exchange their protein and lipid components between the central nervous system (CNS) and the systemic circulation remains unclear. In this review, we delineate how HDL's structure and composition enable exchange between the brain, cerebrospinal fluid (CSF) compartment, and vascular cells that ultimately affect brain amyloid metabolism and atherosclerosis. Accordingly, we then elucidate how modifications of HDL-P have diagnostic and therapeutic potential for brain vascular and neurodegenerative diseases.

7.
ACS Pharmacol Transl Sci ; 4(1): 266-275, 2021 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33615178

RESUMO

Thymidine analogues, 5-substituted 2'-deoxy-2'-[18F]fluoro-arabinofuranosyluracil derivatives, are promising positron emission tomography (PET) tracers being evaluated for noninvasive imaging of cancer cell proliferation and/or reporter gene expression. We report the radiosynthesis of 2'-deoxy-2'-[18F]fluoro-5-methyl-1-ß-d-arabinofuranosyluracil ([18F]FMAU) and other 2'-deoxy-2'-[18F]fluoro-5-substituted-1-ß-d-arabinofuranosyluracil analogues using 1,4-dioxane to replace the currently used 1,2-dichloroethane. Compared to 1,2-dichloroethane, 1,4-dioxane is analyzed as a better solvent in terms of radiochemical yield and toxicity concern. The use of a less toxic solvent allows for the translation of the improved approach to clinical production. The new radiolabeling method can be applied to an extensive range of uses for 18F-labeling of other nucleoside analogues.

8.
RSC Med Chem ; 11(3): 392-410, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33479645

RESUMO

A potent class of isoquinoline-based α-N-heterocyclic carboxaldehyde thiosemicarbazone (HCT) compounds has been rediscovered; based upon this scaffold, three series of antiproliferative agents were synthesized through iterative rounds of methylation and fluorination modifications, with anticancer activities being potentiated by physiologically relevant levels of copper. The lead compound, HCT-13, was highly potent against a panel of pancreatic, small cell lung carcinoma, prostate cancer, and leukemia models, with IC50 values in the low-to-mid nanomolar range. Density functional theory (DFT) calculations showed that fluorination at the 6-position of HCT-13 was beneficial for ligand-copper complex formation, stability, and ease of metal-center reduction. Through a chemical genomics screen, we identify DNA damage response/replication stress response (DDR/RSR) pathways, specifically those mediated by ataxia-telangiectasia and Rad3-related protein kinase (ATR), as potential compensatory mechanism(s) of action following HCT-13 treatment. We further show that the cytotoxicity of HCT-13 is copper-dependent, that it promotes mitochondrial electron transport chain (mtETC) dysfunction, induces production of reactive oxygen species (ROS), and selectively depletes guanosine nucleotide pools. Lastly, we identify metabolic hallmarks for therapeutic target stratification and demonstrate the in vivo efficacy of HCT-13 against aggressive models of acute leukemias in mice.

9.
Theranostics ; 9(25): 7849-7871, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31695804

RESUMO

With further research into the molecular mechanisms and roles linking immune suppression and restraint of (pre)malignancies, immunotherapies have revolutionized clinical strategies in the treatment of cancer. However, nearly 70% of patients who received immune checkpoint therapeutics showed no response. Complementary and/or synergistic effects may occur when extracellular checkpoint antibody blockades combine with small molecules targeting intracellular signal pathways up/downstream of immune checkpoints or regulating the innate and adaptive immune response. After radiolabeling with radionuclides, small molecules can also be used for estimating treatment efficacy of immune checkpoint blockades. This review not only highlights some significant intracellular pathways and immune-related targets such as the kynurenine pathway, purinergic signaling, the kinase signaling axis, chemokines, etc., but also summarizes some attractive and potentially immunosuppression-related small molecule agents, which may be synergistic with extracellular immune checkpoint blockade. In addition, opportunities for small molecule-based theranostics in cancer immunology will be discussed.


Assuntos
Neoplasias/imunologia , Neoplasias/terapia , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/uso terapêutico , Animais , Humanos , Sistema Imunitário/efeitos dos fármacos , Sistema Imunitário/imunologia , Imunoterapia/métodos , Nanomedicina Teranóstica/métodos
10.
J Biol Inorg Chem ; 24(5): 621-632, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31250199

RESUMO

Triapine (3-AP), is an iron-binding ligand and anticancer drug that is an inhibitor of human ribonucleotide reductase (RNR). Inhibition of RNR by 3-AP results in the depletion of dNTP precursors of DNA, thereby selectively starving fast-replicating cancer cells of nucleotides for survival. The redox-active form of 3-AP directly responsible for inhibition of RNR is the Fe(II)(3-AP)2 complex. In this work, we synthesize 12 analogs of 3-AP, test their inhibition of RNR in vitro, and study the electronic properties of their iron complexes. The reduction and oxidation events of 3-AP iron complexes that are crucial for the inhibition of RNR are modeled with solution studies. We monitor the pH necessary to induce reduction in iron complexes of 3-AP analogs in a reducing environment, as well as the kinetics of oxidation in an oxidizing environment. The oxidation state of the complex is monitored using UV-Vis spectroscopy. Isoquinoline analogs of 3-AP favor the maintenance of the biologically active reduced complex and possess oxidation kinetics that allow redox cycling, consistent with their effective inhibition of RNR seen in our in vitro experiments. In contrast, methylation on the thiosemicarbazone secondary amine moiety of 3-AP produces analogs that form iron complexes with much higher redox potentials, that do not redox cycle, and are inactive against RNR in vitro. The catalytic subunit of human Ribonucleotide Reductase (RNR), contains a tyrosyl radical in the enzyme active site. Fe(II) complexes of 3-AP and its analogs can quench the radical and, subsequently, inactivate RNR. The potency of RNR inhibitors is highly dependent on the redox properties of the iron complexes, which can be tuned by ligand modifications. Complexes are found to be active within a narrow redox window imposed by the cellular environment.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Complexos de Coordenação/química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Ferro/química , Piridinas/química , Tiossemicarbazonas/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Eletroquímica/métodos , Humanos , Estrutura Molecular , Oxirredução/efeitos dos fármacos , Ribonucleotídeo Redutases/antagonistas & inibidores , Ribonucleotídeo Redutases/metabolismo , Tirosina/química
11.
Proc Natl Acad Sci U S A ; 113(15): 4027-32, 2016 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-27035974

RESUMO

Deoxycytidine kinase (dCK), a rate-limiting enzyme in the cytosolic deoxyribonucleoside (dN) salvage pathway, is an important therapeutic and positron emission tomography (PET) imaging target in cancer. PET probes for dCK have been developed and are effective in mice but have suboptimal specificity and sensitivity in humans. To identify a more suitable probe for clinical dCK PET imaging, we compared the selectivity of two candidate compounds-[(18)F]Clofarabine; 2-chloro-2'-deoxy-2'-[(18)F]fluoro-9-ß-d-arabinofuranosyl-adenine ([(18)F]CFA) and 2'-deoxy-2'-[(18)F]fluoro-9-ß-d-arabinofuranosyl-guanine ([(18)F]F-AraG)-for dCK and deoxyguanosine kinase (dGK), a dCK-related mitochondrial enzyme. We demonstrate that, in the tracer concentration range used for PET imaging, [(18)F]CFA is primarily a substrate for dCK, with minimal cross-reactivity. In contrast, [(18)F]F-AraG is a better substrate for dGK than for dCK. [(18)F]CFA accumulation in leukemia cells correlated with dCK expression and was abrogated by treatment with a dCK inhibitor. Although [(18)F]CFA uptake was reduced by deoxycytidine (dC) competition, this inhibition required high dC concentrations present in murine, but not human, plasma. Expression of cytidine deaminase, a dC-catabolizing enzyme, in leukemia cells both in cell culture and in mice reduced the competition between dC and [(18)F]CFA, leading to increased dCK-dependent probe accumulation. First-in-human, to our knowledge, [(18)F]CFA PET/CT studies showed probe accumulation in tissues with high dCK expression: e.g., hematopoietic bone marrow and secondary lymphoid organs. The selectivity of [(18)F]CFA for dCK and its favorable biodistribution in humans justify further studies to validate [(18)F]CFA PET as a new cancer biomarker for treatment stratification and monitoring.


Assuntos
Nucleotídeos de Adenina/química , Arabinonucleosídeos/química , Biomarcadores Tumorais/química , Desoxicitidina Quinase/análise , Desoxicitidina Quinase/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Animais , Antineoplásicos/química , Linhagem Celular Tumoral , Clofarabina , Meios de Contraste/química , Desoxicitidina Quinase/antagonistas & inibidores , Humanos , Leucemia/enzimologia , Camundongos , Neoplasias/tratamento farmacológico , Pró-Fármacos/química , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...